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Domain-Integral Analysis of Channel Waveguides in

Anisotropic Multi-layered Media
Harrie J. M. Bastiaansen, Nico H. G. Baken, and Hans Blok

Abstract–A domain-integral equation method is presented to
determine both propagation constants and the electromagnetic

field distributions of guided surface wave modes in integrated

optical waveguides. Both the waveguide and its multi-layered

embedding are anisotropic. The permittivity tensor of the
embedding is assumed to be piecewise homogeneous. The ker-
nels of the domain-integral equations consist of Green’s ten-
sors. The scattering-matrix formalism is used to construct the
Green’s tensors. The integral equations form an eigenvalue
problem, where the electric field strength represents the eigen-

vector. This problem is solved numerically by applying the
method of moments. Numerical results are presented for an

anisotropic ridge waveguide, embedded in an anisotropic mul-

tilayered medium.

I. INTRODUCTION

T

HE DEVELOPMENT of integrated optical devices

creates a growing need for accurate mathematical

models to analyse their waveguiding properties. For tight

design criteria and a profound insight in the working of

these devices, approximate methods often lack the nec-

essary accuracy, Examples of such approximate methods

are the (corrected) effective index method [1], [2], the

semi-vectorial finite difference method [3], [4], and the

scalar finite element method [5].

The treatment of the infinite transversal cross-section

poses a major problem in the analysis of open waveguides

using finite difference and finite element techniques, This

problem can be approached either by imposing an artifi-

cial zero boundary condition [6], or by employing ele-

ments extending to infinity [7]. The first approach has the

disadvantage of requiring an extensive computational do-

main, especially for calculating propagation constants

near cut-off. The infinite elements have the disadvantage

of unknown field-behavior of the infinite elements a

priori. Therefore, the development of rigorous mathe-

matical methods, allowing the computational domain to

be restricted to the finite cross-section of the waveguide,
is desirable.

Several of these methods, have been proposed. Goell

[8], has developed the method of circular harmonic ex-
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pansion, in which the interior and exterior fields are ex-

panded in (modified) Bessel functions with unknown coef-

ficients, which are determined by matching the tangential

field-components around the boundary of the waveguide.

Several surface-integral equation methods have been pro-

posed by [9], [10], and [11]. These relate the fields and

their normal derivatives on the boundary of the wave-

guide. To take inhomogenities of the waveguide into ac-

count, a combination with the finite-element method has

been proposed [12]. These rigorous methods have the

drawback of not being applicable to waveguides embed-

ded in multi-layered media. The domain-integral equation

method however, can overcome this drawback [ 13]-[ 15].

In this method, the waveguide is regarded as a pertur-

bation of its embedding, allowing an integral equation for

the electric field strength within the waveguide to be de-

rived. Cottis et al. [16] have demonstrated how the

method can be used to determine propagation constants of

guided surface wave modes in waveguides embedded in

two-layered media, whereas Kolk et al. [17] treated multi-

layered media. However, the analyses of [16], [17] could

only handle isotropic embedding. Since electro-optical

devices require anisotropic materials (e. g., Lithium Nio-

bate) an extension of the method is in order.

In this paper, the domain-integral equation method is

extended to multi-media configurations consisting of an-

isotropic materials. A scattering-matrix formalism, which

is inherently stable, is introduced to calculate the Green’s

tensors, which form the kernels of the domain-integral

equations. This formalism has the advantage of using

considerably less CPU-time than the formalism described

in [17], using recursive transmission and reflection func-

tions. Both propagation constants and modal field-distri-

butions of guided surface wave modes in an anisotropic

waveguide, embedded in an anisotropic multi-layered

medium, are numerically computed. The results are com-

pared with the results for a corresponding isotropic wave-

guiding structure. This shows how neglecting the an-
isotropic character of the waveguiding structure can

influence the propagation constants of guided surface

wave modes,

II. FORMULATION OF THE PROBLEM

The waveguide 5) ‘“ is embedded with one subdomain

of a stratified embedding. This embedding consists of N

subdomains % ‘, 92, . . - , ‘D N which have finite thick-
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nesseshl, h2, “ “ “ , h N and are sandwiched between the

semi-infinite substrate D 0 and the semi-infinite super-

strata D ~+ 1. The position in space is specified using a

right-handed Cartesian reference frame Oxyz; the x-axis

is taken perpendicular to the interfaces of the subdomains.

The ~-axis is chosen such that the material properties of

the waveguiding configuration are invariant in the

z-direction. The origin O is situated in the center of the

subdomain !D’, containing the waveguide 53 w. A cross

section perpendicular to the z-axis is given in Fig. 1. All

subdomains of the embedding are assumed to be homo-

geneous and possibly anisotropic; thus, the permittivity

profile of the embedding can be described with the step-

wise-constant tensor g b(x). In this paper we restrict our-

selves to a homogene~us perrnittivity tensor of the wave-

guide g‘, although the theory can be readily extended to

wavegfiides being inhomogeneous [17]. Furthermore,

only permittivity tensors (uniaxial or biaxial) are consid-

ered with principal axes coinciding with the base vectors

(for a more elaborate analysis, see [1 8]). The components

cmn of these permittivity tensors are equal to O for m #

n, (m, n = 1, 2, 3). The nonzero diagonal-components

e~~ will from now on be denoted as e,~t.

Time-harmonic solutions of the source-free Maxwell’s

equations are sought that represent guided surface wave

modes propagating in the positive z-direction. The elec-

tromagnetic field constituents of angular frequency u and

axial wavenumber k: have the form

{E, E}(x, y, z) = {E, lZ}(~j y; k,) exp (-jkZz). (1)

The complex time factor exp (jut) is omitted throughout

this paper. The waveguide D w being regarded as a per-

turbation of the embedding, the electric field ~ and the

magnetic field ~ satisfy Maxwell’s equations:

–y, x B(X, y; k,) + j@(x)E(x, y; Q

= –Jc(x, y; Itz),

l!, x E(A Y; Q + jwo~(x> Y; L) = Q, (2)

where ~f = (d /i3x, a /ay, – jkZ) aml ~ represents the

electric constrast-source current density, that is defined

within the waveguide 53 w through

r(x, y; IQ = jti{gw’ – gb(x)) “ E(x, y; k,) (3)

and vanishes everywhere outside D w.

Using Lorentz’s reciprocity theorem, integral represen-

tations for the electric field and the magnetic field can be

derived:

E(X, y; k,) =
~!

GEE(X, y; X’, y’; k,)

s.

- ~(X’, y’; kz)dx’dyr, (4)

S.!B(X, y;k,) = &E(x, y; x’, Y ‘; k,)

● ✎
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Fig. 1. Cross-section of the channel waveguide structure.

with GEE and ~ME being the dyadic electric and magnetic

Gree~s tensor, respectively. These Green’s tensors are

the solution of the inhomogeneous Maxwell equations:

–~’ X ~ME(X, y; X’, y’; Q

+ jcoEb (X) QEE(X, y; x’, Y’; k,)—

= –~ “ (3(X – x’, y – y’),

yt x &E(x, y; x’, y’; k,)

+ jqLo&E(x, y; x’, y’; Itz) = !2, (6)—

with ~ the unit tensor of rank 2 and 6(x, y) the two-dimen-

sional Dirac delta function. Note that the relation in (4)

expresses the electric field at an arbitrary point (x, y) in

terms of the Green’s tensor ~~~ and the electric field

within the waveguide. If the point (x, y) is chosen within

the waveguicling region Q‘, (4) becomes a domain-inte-

gral equationl for the electric field ~ within D ‘“. Solving

this equation can be regarded as solving an eigenvalue

problem. The equation yields nontrivial solutions for a

discrete set of values k, that corresponds to the propaga-

tion constants for propagating guided surface wave modes.

Once these values have been determined, the correspond-

ing electric field within 3J w can be computed. Subse-
quently, the electric field outside, and the magnetic field

everywhere, can be evaluated from (4) and (5), respec-

tively. To execute the procedure outlined in the forego-

ing, the kernel of the domain integral equations, the

Green’s tensors, must first be determined.
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III. THE GREEN’S TENSORS

The kernel of the domain-integral equations consists of

the Green’s tensors GEE and ~~E, which satisfy the in-

homogeneous Maxw~ll equations (6). Instead of solving

these equations for each of the columns of the unit tensor

separately, we show how to solve

–y, x ~G(x, y; x’, y’; Q + j@&@(x, y; x’, y’; k,)

= –J” 6(X – x’, y – y’), (7)

~, X ~G(X, y; X’, y’; k,)

‘k)=Q,+ jqJo&(x, y; x’, Y 7 z (8)

in which ~ = (jTl, J;, ]:) is an arbitrary constant vector;

The ith column of the Green’s tensor q: ( ~~~ ) equals

the electric magnetic field ~G (~G), for ~ equal to the i th

unit vector (i = 1, 2, 3). The superscript ‘‘”’ is used in

order to avoid confusion between the electric and mag-

netic fields being solutions of the domain-integral equa-

tions (4), (5) and the electric and magnetic fields being

solutions of the point-source problem (7), (8). The wave-

guide D” being completely embedded within subdomain

33’, the domain-integral equations (4), (5) can be solved

when the Green’s tensors (or equivalently, the solution of

(7), (8)) are known for source points (x’, y’) and obser-

vation points (x, y) both situated inside this subdomain.

The presence of the point source divides subdomain 33 i

in two new subdomains D‘~ and 50 ‘–, having thick-

nesses h~+and hk-, respectively (Fig. 2).

Several formalisms for solving Maxwell’s equations

(7), (8) are possible, A method using recurrence trans-

mission and reflection functions for isotropic materials has

been presented in [19]. A modified version of this for-

malism has been presented in [17]. In the present paper,

a formalism, called the scattering-matrix formalism, is

outlined.

Making use of the y-invariance of the embedding, Max-

well’s equations (7), (8) are submitted to a spatial Fou-

rier-transformation in the y-direction, defined as

!

m

f(k,) = _m 7( Y) exp (jk,y) ~Y,

[.?(Y) =* :af(k,) = exp ( –jk,y) dky,

yielding

–~, X ~G(x; X’, y’; kY, k,)

+ jugb(x)~G (x; x’, y’; kY, k,)

= –~exp (jkYy ’) 6(x – x’),

~, X jG(X; X’, y’; k~> kz)

+ @~o&G(X; X’, y’; kY, k:) = ~,

(9)

(lo)

(11)

with ~’ = (13/&t, –jkY, –jkz). In the remainder of this

section we will determine the solution of (10), (11) for

p

~N-1
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Fig. 2. Electric point source situated m subdomain D k,

fixed values kY and k:. Furthermore, the y’-dependence of

the electric and magnetic fields can easily be seen to equal

exp ( jkv y‘ ). Therefore, we will concentrate on the x- and

x ‘-dependence and only these coordinates will appear as

arguments of the functions to be determined.

The set of equations (10), (11) consists of 4 first-order

ordinary differential equations and two algebraic equa-

tions. The algebraic equations are used to eliminate the

components ~ f and I?: from the differential equations.

The resulting set of ordinary differential equations can be

presented in matrix-notation:

ap(x; x’)
= A(x) “ p(x;x’) + j “ 8(X – x’),

ax

. exp (jkYy ’) 8 (x – x’)),

(12)

The 4 * 4 matrix A(x) is called the system’s matrix. It is

x-independent in the interior of each of the subdomains of

the embedding. Its com~onents are enumerated in the am.
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pendix. The vectors ~G and $ are callled the field vector

and the source vector, respecfivel y, The field vector con-

tains the components of the electromagnetic field which

are tangential to the interfaces separating two adjacent

subdomains of the embedding. Henc:e, it is continuous

across these interfaces. The components of the electric

and magnetic field in the field vector are normalized and

are ordered such that the system’s matrix consists of only

two non-zero blocks on the anti-diagcmal (see appendix).

To solve the set of inhomogeneous ordinary differential

equations (12) four basic relations are used. These are il-

luminated in the next subsection.

A. Basic Relations

● General solution within one sub domain.

The set of differential equations (12) is inhomoge-

neous. In the interior of subdomains D ~, 1 e {0, “ “ “ ,

N + 1) however, the field vector satisfies the homo-

geneous set of ordina~ differential equations with

x-independent system’s matrix A(x) = A 1. Using the di-

agonal decomposition

Al = T~ . xi . (T~)-l, I;. = (), m # n, (13)

the general solution of the system of homogeneous dif-

ferential equations equals

jG(.x; x’) = T~ “ exp [i~(x – X’tf)] “ ~t(x ‘),

x 1–1 <x<x~. (14)

The vector ~~(x’) = (~\(x’), ~i(x’), j_~(x’), ~~x’))~ is

called the reference vector subdomain D [ and equals

(T/)- 1 “ ~G(xref; x‘ ) in which x = Xref is the reference

level of subdomain D 1. This reference level equals the

lower interface for subdomains above the source-point and

equals the upper interface for subdomains underneath the

source-point.

For the materials considered in this paper (a more ex-

tensive discussion is given in [18]), the eigenvalues of the

system’ s-matrix occur in pairs, having opposite signs (see

appendix). This property is reflected in the corresponding

eigenvectors:

~’ = diag (–A1, At),

Al = diag (hi, hi), Re { h;, Ii} > 0, (15)

‘l=[;; ‘3

[

(T~l)-l (Tjl)-l
(T/)-l = ~

1–(T\l)-l (T~l)-l “
(16)

With (15), (16), an extensive part of the computation of
the Green’s tensor can be performed analytically if the

scattering-matrix formalism is used. This will be shown

in the next section.

c Boundary conditions for substrate and superstrata.

For 1x1 ~ co, the components of the field-vector have

to decrease exponentially. This condition is satisfied if

(cf. (14), (15))

f;(x’) =f:(x’) =f:+l(x’) =f~+l(x’) = o. (17)

● Continuity condition.

The components of the field-vector are continuous

across the interfaces x = xl, 1 e {0, “ “ “ , N}. Hence,

the general solution within one subdomain (14) yields

~’+l(x’) = (T’+l)-l . T’ “ exp [D1/zl] “ f~(x’),

le{k+, ””. ,N}, and (18)

~~-l(x’) := (T~-l)-l o T[ . exp [–D1h~] “~~(x’),

le{l, ”””, k–). (19)

● Connection condition at the source level.

Integration of the inhomogeneous ordinary differential

equations (12) over an infinitesimal x-interval containing

x = x‘ yields

~~+(xr) –~’-(x’) = (T’)-l s ~ =: & (20)

In the next subsection, we show how these relations can

be used to solve the system of ordinary differential equa-

tions (12). The applied formalism is called the scattering-

matrix formalism.

B. The Scattering-Matrix Formalism

Using the relations enumerated in the previous section,

the different components of the reference vector of one

subdomain can be interrelated; the scattering-matrix for-

malism. For subdomains above the source-point, a down-

ward recursive scheme is used; for subdomains under-

neath the scmrce-point, an upward recursive scheme is

used. The remaining unknown components of the refer-

ence vectors are solved by using the connection condition

(20).

Before considering the scattering-matrix formalism in

detail, two new notations are introduced:

● Let g be a vector having four components g = (UL,

V2, V3, v4)~, then the vectors g 12 and g 34, having 2 com-

ponents, are defined as q 12 = (vl, oz)~ and g34 = (vq,

v4)~ respectively.

● In order to reduce the number of formulae, square

brackets are used (see for example (23)). Taking the up-

per and lower expressions between these brackets succes-

sively, two equations result instead of one.

Downward Recursion: The downward transmission-

matrix g‘> ~ and the downward reflection-matrix @” t for

subdomain D1, 1 e {k+, “ “ “ , N + 1], are defined

through

f~2+l(x’) = 9d’1 . f\2(x’),

fi4(x’) = @d’l “.fi2 (x’), l?= {k+, “ “ “ ,N+ 1}.

(21)

The continuity condition (18) and the general solution (14)

yields a recursive scheme for the downward reflection-
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and transmission-matrix:

gd” = gal”+’ . {Bj + B: “ 6id’’+ ’)-1

o exp [–A~ht],

~d~ = exp [–At~l] . {~~ + B~ . @d,l+l}

- {Bj + B: - a“’+’}-] . e.Xp [-A’h’] (22)

with

(23)

The recursive scheme is initialized by definition of the

downward transmission-matrix and downward reflection-

matrix in the cover in accordance with the boundary con-

dition (17) as 9 “N + 1 = Z and @“N+ 1 = O respectively.

Upward Recursion: The upward transmission-matrix

9‘> ~ and the the upward reflection-matrix (R” Z for sub-

domain ll~, 1 e {0, “ “ “ , k – }, are defined through

f:,(x’) = 9’”1 “ f~4(x’),

f\2(.x’) = (RZ”l “ f:4(x’), 16 {O, c c o ,k–}. (24)

The continuity condition (19) and the general solution (14)

yield a recursive scheme for the upward reflection- and

transmission-matrix:

U,l _
EJ–

@ujl =

with

\ LA

(26)

The recursive scheme is initialized by definition of the

upward transmission-matrix and upward reflection-matrix
in the substrate in accordance with the bounda~ condition

(17) as gu>o = 1 and (RU’o = O respectively.

Interconnecting the Reference vectors: With the

downward recursive outlined above, the reference vectors

of subdomains above the point-source are solved as a

function of f ~~ (x’ ). Analogous, the upward recursive

scheme is us~d to solve the reference vectors of subdo-

mains underneath the point-source as a function of the

components ~!j~ (.x’). These last vectors are determined

with the connection condition (20). Subsequently, the re-

cursive schemes (22), (25) and the general solution (14)

are used to generate the solution of (12) in the entire con-

figuration. For solving the domain-integral equation how-

ever, it suffices to determine the Green’s tensor for x and

x‘ in the interior of subdomain D‘. The vectors f~~ (x’)

and f ~~ (x’ ) are x ‘-dependent only through the scattering

matrices of the subdomains D‘+ and D ‘– respectively

(all other scattering matrices are x’-independent). This

x ‘-dependence is explicitly known (22), (25). Together

with the known x-dependence of the general solution

‘–, the scattering-matrix formalism al-within ‘D’+ and T)

lows the Green’s tensors to be determined much more ex-

plicitly. This will be shown in the next subsection.

C. The Green’s Tensor Components

In this subsection, relations are derived explicitly

showing the x- and x ‘-dependence of the field vector

FG(X; x’) fo r fixed values kY and kr. To this end, the re-

~ection-matrices (R d and @ u are introduced as being the

downward and upward reflection-matrix corresponding to

the point-source situated at the center of subdomain D‘;

x ‘ = O. The recursive schemes (22), (25) yield expres-

sions for the reflection-matrices, for points x‘ in 53 L dif-

ferent fromx’ = O (A := Ak);

~d,~+(x’) = exp [Ax’] o (Rd “ exp [Ax’],

@“k-(.x’) = exp [–Ax’] “ @u . exp [–Ax’]. (27)

Together with the definition of the reflection-matrices,

these expressions are used in the connection condition to

give

[[
-&@‘) = exp –+_

“[1I

@d “

—

Ax’ 1
{z- (R’. ~d}-1

“ exp [Ax’]

“J2-exmAx’l“[:.1

ff~l(x’) = exp [[dAx’l~[:’1
o {1- ad. (R”}-l . ad

“ exp [Ax’] “ ~lz

-exd[~lAx’l“[:”1.{z- ad.@tJ}-’.exp [-Ax’] . ~q,.

(28)

Substitution in the general solution within subdomain D k

(14) reveals the explicit x- and x ‘-dependence of the field-
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vector ~G(x; x ‘);

fflfl(x; x’) = & ~exp,-Axl+[~].x~,Axl

(Rd“1.{I-(R’}-l. ({exp [Ax’]

+(RU” exp [–Ax’]} o (T~l)-L

“ & + {.xp [Ax’] – 6?’

“ exp [–Ax’]} “ (T~l)-l . $31),

~k–l
<X ’<x<xk, (29)

k

F:?] (x; x’) = ;q:~] “
[[1

—

exp [Ax] + exp [ –Ax]
+

. (RU . {I– ~d. G~u}-1

. ({exp [–Ax’] + (Rd . exp [Ax’]}

“ (Tfl)-l “ j12 – {CXII [–Ax’]

— (Rd “ exp [Ax’]} “ (?$l)-l . ~g~),

Xk–l
<X<x’<xk. (30)

For ~ = (~1, L, A) equal to the i-th unit vector (i. = 1,

2, 3), the components of ~fi yield the Fourier-trans-

f~rmed electric Green’s tensor components d~E and

Gf~. The component G~E follows from the linear rela-

tions in (12). The electric Green’s tensor in the spatial (x,

y)-domain ~~~, is obtained through inverse Fourier-trans-

formation =ith respect to kY. Similarly, the magnetic

Green’s tensor is derived from the components of ~fi.

IV. NUMERICAL IMPLEMENTATION

In order to find the nontrivial solutions of the domain-

integral equation, the method of moments is applied [20].

The cross-section of the channel-wavcguide D w is divided

into L rectangular subdomains S1, 1 e {1, o “ “ , L}. Rec-

tangle functions are used as expansion functions, which

take the value 1 within S1 and vanishl outside S~. For the

weighting functions, Dirac functions are used (point-

matching). Assuming that the electric field strength in S ~

is constant and equal to the actual electric field strength

~1 in the barycenter (x ~, y ~) of S1, the method of moments

~ields
co

jcd .&~kE_

H s
&E(xk; x’, y , ~

27rl=l ~, -w=
‘k, kz)

- exp (–jkYyk) dkY &’ dy’{~w – ~b]~l,

k~{l, .”. ,L}. (31)

This is a system of 3 * L linear algebraic equations for the

3 * L unknown components of the electic field strength;

l?f,k~{l,””., L}, i e { 1, 2, 3}. A numerical imple-

mentation has been made for the important class of uniax-

ially anisotropic materials having optic axis perpendicular

to the interface of two adjacent subdomains of the embed-

ding. In the ~appendix, the components of the decompo-

sition matrix T~ and the corresponding diagonal-matrix

11 are listed, For these materials, the reflection matrices

@d and (R u are diagonal matrices. Therefore, the com-

putation of the components of the Green’s tensor using

(29), (30) can be performed using scalar instead of matrix

arithmetic. H[ence, CPU-times are reduced considerably

with respect to full matrix methods (e.g. [17]).

In determining the contribution of subdomain S~, the

order of spatial integration over S[ and inverse Fourier-

transformaticm with respect to kY is interchanged; first the

relations (29), (30) are integrated over S[, next the inverse

Fourier transformation is evaluated. For the inverse Four-

ier transformation, special care has to be taken of the

spectral plane singularities in the complex k, plane: for

k; + k; = I%WM, &WM being the Propagation Constant of
a surface wave mode of the layered embedding, the com-

ponents of the Green’s tensors are singular. Therefore, if

k, is larger than the largest ~sw~, no problems in the in-

verse Fourier transformation over the real axis occur. If

kz is less than the largest ~sw~, the integration path of the

inverse Fourier transformation is deformed into the first

and third quadrant of the complex kv plane around the sur-

face wave pcdes.

The interchanging of the order of integrations accom-

plishes the convergence of the inverse Fourier-transfor-

mation ([2 1],, Problem 2.3 1). The spatial integration over

the subdomains St can easily be performed analytically.

The inverse Fourier-transformation for the non-exponen-

tially decaying part of the integrand is also performed an-

alytically. The inverse Fourier-transformation for the re-

maining exponentially decaying part of the integrand is

performed using a Fast Fourier Transformation algo-

rithm.

Subsequently, the system of linear algebraic equations

is solved by searching for those values of k, = /3m for

which a nontrivial solution exists. Once these eigenvalues

~~ have been determined, the accompanying eigenvector

is calculated. Obviously, the eigenvalue ~ m corresponds

to a propagation constant of a propagating guided wave

mode, and the eigenvector to its electric field distribution

within the waveguide D‘.

V. NUMERICAL RESULTS

To illustrate the theory developed in the previous sec-

tions, it is used to investigate the influence of neglecting

the anisotropic character of the embedding of a polymeric

single-rib waveguide. To do so, the propagation constants
of the fundamental modes of the waveguiding structure

are calculated. Although all modes are hybrid (none of

the field components equals zero), the fundamental modes

are denoted as Transverse Electric (TEOO, E2 is the dom-

inant ele@c field component) and Transverse Magnetic

(TMOO, El is the dominant electric field component) re-
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spectively. The waveguiding structure consists of an un-

iaxially anisotropic ridge waveguide, embedded in a un-

iaxially anistotropic stratified medium. This waveguide

has been developed within the framework of the project

RACE 1019 (Research on Advanced Communication

Technologies in Europe). A domain-integral equation

analysis of a similar waveguide has been presented in [17],

where the waveguiding structure was assumed to be iso-

tropic.

The embedding consists of a glass substrate (refractive

index 1.5) on which three polymeric layers are deposited

(Fig. 3); two polyurethane buffer layers of thickness 2.0

pm and a central guiding layer of thickeners 2.5 pm. The

buffer layers are isotropic (refractive index 1.523). The

central guiding layer consists of an uniformly poled elec-

tro-optical polymer. The poled polymer is uniaxially an-

isotropic, the optical axis being normal to the interfaces

of the embedding; n‘ = 6=1.606, n0=~=~

= 1.576. In the electro-optical polymer, a rib with a width

w = 5.0 pm is photochemically induced, using ultra vi-

olet exposure [22]. The rib height r depends on the ex-

posure-time. Due to the ultra-violet exposure, the refrac-

tive indices of the anisotropic poled polymers decrease to

the isotropic value n‘ = n 0 = 1.556. For this configura-

tion, the propagation constants of the fundamental modes

TEOO and TMOO are determined as a function of r. The

waveguide is operated at the free-space wavelength AO =

1.335 ~m. The numerical results are compared with re-

sults obtained by replacing the embedding of the wave-

guiding structure with a corresponding isotropic one. For

TE modes, the dominant electric field component is par-

allel to the interfaces. Therefore, the corresponding iso-

tropic embedding is obtained by replacing the uniaxially

permittivity tensor by the isotropic permittivity e = (n “)2
—— 1.5762. For TM modes, the dominant electric field

component is normal to the interfaces. Therefore, the cor-

responding isotropic embedding is obtained by replacing

the uniaxially permittivity tensor by the isotropic permit-

tivity e = (n ‘)2 = 1.6062 (Fig. 4). The waveguide itself

remains uniaxial.

To increase the accuracy of the results, the channel

waveguide has been divided in Q subdomains in the

x-direction and P subdomains in the y-direction (L. = P *

Q), for ranging values of P and Q, For r = 1,5 micron

and P = 4 * Q + 4, Fig. 5 gives the calculated values of

the effective refractive index of the fundamental TM mode

for both the isotropic and the uniaxial case as a function

of 1/L. By extrapolation of this function for 1/L ~ O,

extremely accurate results for the effective refractive in-

dex are obtained.

Table I and Table II show the effective refractive in-

dices N.ti = (3/k. as a function of r for the TEOOand TMOO

mode respectively, for both the uniaxially waveguide and

its isotropic counterpart.

The numerical results show that approximating the

uniaxially waveguiding structure by its isotropic counter-

part, leads to only small errors. The errors for TM-modes

are larger than for TE-modes. This is due to the fact that

ned 606, n% 576

Fig. 3. Polymeric rib waveguide developed within RACE 1019.
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Fig. 4. Replacement of the uniaxial embedding by a corresponding iso-
tropic embeddmg.
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Fig. 5. The calculated effective refractive index for the fundamental TM
modes as a function of the number L: (a) Isotropic embedding, (b)

uniaxial embedding.

TABLE I

THE NORMALIZED EFFECTIVE REFRACTIVE
INDEX (IVef – 1.56) * 1E5 FORTHE

FUNDAMENTAL TRANSVERSE ELECTRIC
MODE TEOO AS A FUNCTION OF THE

RIB-HEIGHT r

r Isotropic Uniaxial

0.5 389 389
1.0 303 303

1.5 240 240
2.0 203 203
2.5 188 188

for TE modes the normal component of the electric field

is negligible. Therefore, the replacement of the extra-or-

dinary component of the permittivity tensor by the ordi-

nary component is of little influence. For TM modes how-
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TABLE II

THE NORMALIZED EFFECTIVE REFRACTIVE

INDEX (NCf– 1.58)* 1E5F0~THE

FUNDAMENTAL TRANSVERSE MAGNETIC

MODE TMOO AS A FUNCTION OF THE
RIB-HEIGHT r

r Isotropic Uniaxial

0.5 1133 1114

1.0 1025 1o11
1.5 960 947
2.0 925 915
2.5 903 903
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Fig. 6. Theelectric field intensity forthe TMoWmode inside the channel

waveguide (r = 2. Omicron).

ever, the component of the electric field parallel to the

interfaces can not be neglected, even tbough it is an order

of magnitude smaller than the normal component. Hence,

replacing the ordinary component of the perrnittivity ten-

sor by the extra-ordinary component does have a certain

amount of influence on the effective refractive indices.

Once the eigenvalues k, = @rn have been determined,

for which the system of linear equations (31) have a non-

trivial solution, the corresponding null-vector yields the

electric field inside the channel waveguide. In Fig. 6 the

intensity of the electric field of the TMoo-mode inside the

channel waveguide is shown for the case of the uniaxial

embedding and r = 2.0 micron. Subsequently, the elec-

tric and magnetic field everywhere in the configuration

can be found using the integral representation (4), (5).

VI. CONCLUSIONS

A domain-integral equation methocl has been presented

for determining both propagation constants and modal

field-distributions of guided surface wave modes of opti-

cal waveguides, embedded in a mullti-layered medium.

Both the waveguide and its embedding may be aniso-

tropic. Furthermore, the waveguide may be inhomoge-

neous. A scattering-matrix formalism is presented, which

efficiently evaluates the kernel of the integral equations.
The integral equation method is successfully applied in

the numerical computation of the propagation constants

of a rib waveguide bleached in an electro-optical poly-

mer, having both an anisotropic lib and anisotropic

embedding.

APPENDIX

For materials of the embedding having a permittivity

tensor that satisfies

g
l_. Codiag (e;{, ej~, c$~),—

lG{O, ”””, N+ l},

the 4 * 4 system’s matrix A ~equals

[1

o Af~

‘1 = ~~1 ()

with

ko

[

N; – ejl NYNZ
A:2 == ~ “

NYNZ 1N; – e~l ‘

[

-N: + e:l NYNZ
Ail == k. “

NYNZ 1–N; + ~:1 ‘

N y>z Z= ky,z/ko,

Furthermore, for a point

the source vector equals

[

NY

g = z;/2 . “
—i.

lco= COG.

(32)

(33)

(34)

source situated in subdomain D ~

. J/,jkl

.;’e~k

. exp (jkvy’). (35)

I Ji

L-j.~ J

The characteristic polynomial P(1) = det (A 1 – M) is of

degree two in A2. Hence, the eigenvalues of A 1appear in

pairs, having, opposite signs. Furthermore, ~ = (V1, Vg,

V3, v4)~ being the eigenvector corresponding to the eigen-

value X, the eigenvector corresponding to the eigenvalue

–X equals ~’ = (– v], – V2, v~, vd)~. This results in the

diagonal decomposition according to (15), (16).

For uniaxial materials with optic axis perpendicular to

the interfaces, the permittivity tensor satisfies ~j 1 = C;l,

and the diagonal decomposition of the system’s matrix is

given by
—

36)
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