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Domain-Integral Analysis of Channel Waveguides in
Anisotropic Multi-layered Media

Harrie J. M. Bastiaansen, Nico H. G. Baken, and Hans Blok

Abstract—A domain-integral equation method is presented to
determine both propagation constants and the electromagnetic
field distributions of guided surface wave modes in integrated
optical waveguides. Both the waveguide and its multi-layered
embedding are anisotropic. The permittivity tensor of the
embedding is assumed to be piecewise homogeneous. The ker-
nels of the domain-integral equations consist of Green’s ten-
sors. The scattering-matrix formalism is used to construct the
Green’s tensors. The integral equations form an eigenvalue
problem, where the electric field strength represents the eigen-
vector. This problem is solved numerically by applying the
method of moments. Numerical results are presented for an
anisotropic ridge waveguide, embedded in an anisotropic mul-
tilayered medium.

I. INTRODUCTION

HE DEVELOPMENT of integrated optical devices

creates a growing need for accurate mathematical
models to analyse their waveguiding properties. For tight
design criteria and a profound insight in the working of
these devices, approximate methods often lack the nec-
essary accuracy. Examples of such approximate methods
are the (corrected) effective index method [1], [2]. the
semi-vectorial finite difference method [3], [4], and the
scalar finite element method [5].

The treatment of the infinite transversal cross-section
poses a major problem in the analysis of open waveguides
using finite difference and finite element techniques. This
problem can be approached either by imposing an artifi-
cial zero boundary condition [6], or by employing ele-
ments extending to infinity |7]. The first approach has the
disadvantage of requiring an extensive computational do-
main, especially for calculating propagation constants
near cut-off. The infinite elements have the disadvantage
of unknown field-behavior of the infinite elements a
priori. Therefore, the development of rigorous mathe-
matical methods, allowing the computational domain to
be restricted to the finite cross-section of the waveguide,
is desirable.

Several of these methods, have been proposed. Goell
[8], has developed the method of circular harmonic ex-
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pansion, in which the interior and exterior fields are ex-
panded in (modified) Bessel functions with unknown coef-
ficients, which are determined by matching the tangential
field-components around the boundary of the waveguide.
Several surface-integral equation methods have been pro-
posed by [9], [10], and [11]. These relate the fields and
their normal derivatives on the boundary of the wave-
guide. To take inhomogenities of the waveguide into ac-
count, a combination with the finite-element method has
been proposed [12]. These rigorous methods have the
drawback of not being applicable to waveguides embed-
ded in multi-layered media. The domain-integral equation
method however, can overcome this drawback [13]-[15].

In this method, the waveguide is regarded as a pertur-
bation of its embedding, allowing an integral equation for
the electric field strength within the waveguide to be de-
rived. Cottis et al. [16] have demonstrated how the
method can be used to determine propagation constants of
guided surface wave modes in waveguides embedded in
two-layered media, whereas Kolk ez al. [17] treated multi-
layered media. However, the analyses of [16], [17] could
only handle isotropic embeddings. Since electro-optical
devices require anisotropic materials (e.g., Lithium Nio-
bate) an extension of the method is in order.

In this paper, the domain-integral equation method is
extended to multi-media configurations consisting of an-
isotropic materials. A scattering-matrix formalism, which
is inherently stable, is introduced to calculate the Green’s
tensors, which form the kernels of the domain-integral
equations. This formalism has the advantage of using
considerably less CPU-time than the formalism described
in [17], using recursive transmission and reflection func-
tions. Both propagation constants and modal field-distri-
butions of guided surface wave modes in an anisotropic
waveguide, embedded in an anisotropic multi-layered
medium, are numerically computed. The results are com-
pared with the results for a corresponding isotropic wave-
guiding structure. This shows how neglecting the an-
isotropic character of the waveguiding structure can
influence the propagation constants of guided surface
wave modes.

II. FORMULATION OF THE PROBLEM

The waveguide D" is embedded with one subdomain
of a stratified embedding. This embedding consists of N
subdomains D', 532, -+ -, DY which have finite thick-
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nesses h !, hyy = 0, k" and are sandwiched between the
semi-infinite substrate D° and the semi-infinite super-
strate DV 1. The position in space is specified using a
right-handed Cartesian reference frame Oxyz; the x-axis
is taken perpendicular to the interfaces of the subdomains.
The z-axis is chosen such that the material properties of
the waveguiding configuration are invariant in the
z-direction. The origin O is situated in the center of the
subdomain D*, containing the waveguide DY. A cross
section perpendicular to the z-axis is given in Fig. 1. All
subdomains of the embedding are assumed to be homo-
geneous and possibly anisotropic; thus, the permittivity
profile of the embedding can be described with the step-
wise-constant tensor ¢ ?(x). In this paper we restrict our-
selves to a homogeneous permittivity tensor of the wave-
guide €, although the theory can be readily extended to
waveguides being inhomogencous [17]. Furthermore,
only permittivity tensors (uniaxial or biaxial) are consid-
ered with principal axes coinciding with the base vectors
(for a more elaborate analysis, see [18]). The components
€qn Of these permittivity tensors are equal to 0 for m #
n, (m, n = 1, 2, 3). The nonzero diagonal-components
€qm Will from now on be denoted as ¢,,.

Time-harmonic solutions of the source-free Maxwell’s
equations are sought that represent guided surface wave
modes propagating in the positive z-direction. The elec-
tromagnetic field constituents of angular frequency w and
axial wavenumber &, have the form

{E,H}(x, y,2) = {E, H} (x, ; k) exp (—jk;2). (1)

The complex time factor exp (jw?) is omitted throughout
this paper. The waveguide D" being regarded as a per-
turbation of the embedding, the electric field £ and the
magnetic field H satisfy Maxwell’s equations:

~V, X Hix, y; k) + joe’ @E, y; k)
= __.ZC(x, v, kz)s
V., x Ex, y; k) + jopoH(x, y; k) =0, 2)

where V, = (3/0x, 3/dy, — jk,) and J¢ represents the
electric constrast-source current density, that is defined
within the waveguide D" through

I, y; k) = jo{e” — " @} - Ex, v k) (3

and vanishes everywhere outside D",

Using Lorentz’s reciprocity theorem, integral represen-
tations for the electric field and the magnetic field can be
derived:

E(x,y; k) = SS _Q_EE(x, v; x', vy’ k)

Dn

STy k) dx' dy!, 4y
Hx, y; k) = SS G (x, y; x', y's k)

S)w

Iy k) dx' dy', )

§N+1\\\}

» -

B e ———
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x

Fig. 1. Cross-section of the channel waveguide structure.

with G and G™* being the dyadic electric and magnetic
Green’s tensor, respectively. These Green’s tensors are
the solution of the inhomogeneous Maxwell equations:

=¥V x G"F(x, yi %', ¥ k)
+ joe" @G x, v x', y'; k)
=—1['6x—x",y—y),
V, X G*&x, y; 5y k)
+ jope G @, yix' ¥ k) = 0, (6)

with [ the unit tensor of rank 2 and 6(x, y) the two-dimen-
sional Dirac delta function. Note that the relation in (4)
expresses the electric field at an arbitrary point (x, y) in
terms of the Green’s tensor G and the electric field
within the waveguide. If the point (x, y) is chosen within
the waveguiding region D", (4) becomes a domain-inte-
gral equation for the electric field £ within " Solving
this equation can be regarded as solving an eigenvalue

_problem. The equation yields nontrivial solutions for a

discrete set of values k, that corresponds to the propaga-
tion constants for propagating guided surface wave modes.
Once these values have been determined, the correspond-
ing electric field within D" can be computed. Subse-
quently, the electric field outside, and the magnetic field
everywhere, can be evaluated from (4) and (5), respec-
tively. To execute the procedure outlined in the forego-
ing, the kernel of the domain integral equations, the
Green’s tensors, must first be determined.



III. THE GREEN’S TENSORS

The kernel of the domain-integral equations consists of
the Green’s tensors G2 and GY, which satisfy the in-
homogeneous Maxwell equations (6). Instead of solving
these equations for each of the columns of the unit tensor
separately, we show how to solve

~V, X HO(x, y; x', ¥, k) + jwe" @ E (x, y; x', y's k)
=_I'5(x_x,9y_y,)’ (7)

V., X ESx, y:x", y's k)

(8)

in which J = (j,, /», j3) is an arbitrary constant vector;
The ith column of the Green’s tensor G# (G*£) equals
the electric magnetic field £¢ (H©), for J equal to the ith
unit vector (i = 1, 2, 3). The superscript “““’* is used in
order to avoid confusion between the electric and mag-
netic fields being solutions of the domain-integral equa-
tions (4), (5) and the electric and magnetic fields being
solutions of the point-source problem (7), (8). The wave-
guide D" being completely embedded within subdomain
D, the domain-integral equations (4), (5) can be solved
when the Green’s tensors (or equivalently, the solution of
(7), (8)) are known for source points (x’, ') and obser-
vation points (x, y) both situated inside this subdomain.
The presence of the point source divides subdomain D*

+ jopoHC(x, y; x', y's k) = 0,

in two new subdomains D*T and D", having thick- .

nessess 2 *and h*~, respectively (Fig. 2).

Several formalisms for solving Maxwell’s equations
(7), (8) are possible. A method using recurrence trans-
mission and reflection functions for isotropic materials has
been presented in [19]. A modified version of this for-
malism has been presented in [17]. In the present paper,
a formalism, called the scattering-matrix formalism, is
outlined.

Making use of the y-invariance of the embedding, Max-
well’s equations (7), (8) are submitted to a spatial Fou-
rier-transformation in the y-direction, defined as

Fitk) = S_m F(3) exp (jkyy) dy,
- 1 {7 3
271' —o0
yielding
—V, x B(; ', y's ky, k)

+ joe? WEC(; x', ¥'s ky k)

= —Jexp (jky") 8x — x"), (10)
Y, X ES(x; x', ' ky, k)
+ jomoHO (i X', ¥ ko k) = 0. (1D)

with V' = (8/0x, —jk,, —jk,). In the remainder of this
section we will determine the solution of (10), (11) for
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Fig. 2. Electric point source situated in subdomain D*.

fixed values k, and k.. Furthermore, the y’-dependence of
the electric and magnetic fields can easily be seen to equal
exp (Jjk,y'). Therefore, we will concentrate on the x- and
x'-dependence and only these coordinates will appear as
arguments of the functions to be determined.

The set of equations (10), (11) consists of 4 first-order
ordinary differential equations and two algebraic equa-
tions. The algebraic equations are used to eliminate the
components E¢ and HY from the differential equations.
The resulting set of ordinary differential equations can be
presented in matrix-notation:

cEOx') + - 8 — x),

FO = (vy?ES. Yo ES, jz/°

- HY, —jz{*HE),

= l ~ ~ ~
ES = — (—k,HS + kHS +j - ],
1

©exp (Jkyy') 6 (x — x")),

I

1 = =
— (—k.ES + KES).
Who
The 4 * 4 matrix A(x) is called the system’s matrix. It is
x-independent in the interior of each of the subdomains of
the embedding. Its components are enumerated in the ap-

AS (12)
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pendix. The vectors F¢ and g are called the field vector
and the source vector, respecavely, The field vector con-
tains the components of the electromagnetic field which
are tangential to the interfaces separating two adjacent
subdomains of the embedding. Hence, it is continuous
across these interfaces. The components of the electric
and magnetic field in the field vector are normalized and
are ordered such that the system’s matrix consists of only
two non-zero blocks on the anti-diagonal (see appendix).

To solve the set of inhomogeneous ordinary differential
equations (12) four basic relations are used. These are il-
luminated in the next subsection.

A. Basic Relations

¢ General solution within one subdomain.

The set of differential equations (12) is inhomoge-
neous. In the interior of subdomains D', I € {0, - - - ,
N + 1} however, the field vector satisfies the homo-
geneous set of ordinary differential equations with
x-independent system’s matrix 4(x) = A4'. Using the di-
agonal decomposition

Al=T A - (T, AL, =0,

m#* n, (13)

the general solution of the system of homogeneous dif-
ferential equations equals

FOux) =T - exp [Ax — x™)] - flx"),

¥ 'sx < xh (14)
The vector f'(x') = (f1(x"), f2(x"), f50), fax ) is
called the reference vector subdomain D’ and equals
(r'"' - FOx™; x') in which x = x™' is the reference
level of subdomain D’. This reference level equals the
lower interface for subdomains above the source-point and
equals the upper interface for subdomains underneath the
source-point.

For the materials considered in this paper (a more ex-
tensive discussion is given in [18]), the eigenvalues of the
system’s-matrix occur in pairs, having opposite signs (see
appendix). This property is reflected in the corresponding
eigenvectors:

Al = diag (-A%, AD),

Al = diag (A, ND. Re {N, ALY = 0, (15)
Tl _ liTln _Tlni}
Ty Thl
(Tl)*l — l[ (Tlll)_l (TIZI)_I} (16)
2 [ y—1 I y—1]°
‘(Tll) (Tzl)

With (15), (16), an extensive part of the computation of
the Green’s tensor can be performed analytically if the
scattering-matrix formalism is used. This will be shown
in the next section.
* Boundary conditions for substrate and superstrate.
For |x| — oo, the components of the field-vector have
to decrease exponentially. This condition is satisfied if
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(cf. (14), (15))
&) =) =) =7 e =o.

¢ Continuity condition.

The components of the field-vector are continuous
across the interfaces x = x', 1 € {0, - - - , N}. Hence,
the general solution within one subdomain (14) yields

17

Frey =@ thT - T exp D' - f1G,
le {k+, --- ,N}, and (18)
folan =@ hH™ - T exp [-D'R] - £,
le{l, - -, k-}. (19)

¢ Connection condition at the source level.
Integration of the inhomogeneous ordinary differential
equations (12) over an infinitesimal x-interval containing
x = x'yields
ey —ffay=aH"-g9g=:3 0
In the next subsection, we show how these relations can
be used to solve the system of ordinary differential equa-

tions (12). The applied formalism is called the scattering-
matrix formalism.

B. The Scattering-Matrix Formalism

Using the relations enumerated in the previous section,
the different components of the reference vector of one
subdomain can be interrelated; the scattering-matrix for-
malism. For subdomains above the source-point, a down-
ward recursive scheme is used; for subdomains under-
neath the source-point, an upward recursive scheme is
used. The remaining unknown components of the refer-
ence vectors are solved by using the connection condition
(20).

Before considering the scattering-matrix formalism in
detail, two new notations are introduced:

® Let v be a vector having four components v = (v,
05, U3, v4)7, then the vectors v, and v4,, having 2 com-
ponents, are defined as v, = (v, v,)! and v5, = (v3,
v4)" respectively.

¢ In order to reduce the number of formulae, square
brackets are used (see for example (23)). Taking the up-
per and lower expressions betweeh these brackets succes-
sively, two equations result instead of one.

Downward Recursion: The downward transmission-
matrix 9% and the downward reflection-matrix ® */ for
subdomain D', | e {k+, --- , N + 1}, are defined
through

ey =94t flhay,

[y = a4 e, lefk+, -, N+ 1}

02y

The continuity condition (18) and the general solution (14)
yields a recursive scheme for the downward reflection-
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and transmission-matrix:

gd,l — gd,l+1 . {Bl_*_ + Bl_ . G{d,l+1}—1

- exp [-A'R'],
R4 =exp [-A'R'] - {B. + B, - ®R%'M1}

~{BY + BL - ®*""1} 7 - exp [-A'R'] (22)
with

+
Bry=r1- {(TZI)“ o'+ L}(T’n)‘1 - T’J‘}.
(23)

The recursive scheme is initialized by definition of the
downward transmission-matrix and downward reflection-
matrix in the cover in accordance with the boundary con-
dition (17) as 9%V "' = Jand R4N*1 = 0 respectively.
Upward Recursion: The upward transmission-matrix
9“! and the the upward reflection-matrix ®“' for sub-
domain D', [ € {0, , k=1, are defined through

[y = 9" - fl(x,
fln(x') =®" - f134(x'),

The continuity condition (19) and the general solution (14)
yield a recursive scheme for the upward reflection- and
transmission-matrix:

le {0, L=} 4

gu,l — gu,l—l . {Cl_', + Cl__ . (Ru,l*l}‘l
- exp [—A'R'],
®*! = exp [-A'A'] - {CL + C|, - ®“'T1
CL + CL - ®R%IT1T s exp [-ARYT (25)
with
1 _ _ + _ B
Ciy = 7 {(T D7 T+ [_}(Tln) beTh 1}'
(26)

The recursive scheme is initialized by definition of the
upward transmission-matrix and upward reflection-matrix
in the substrate in accordance with the boundary condition
(17) as 9“° = Iand ®R*° = 0 respectively.
Interconnecting the Reference Vectors: With the
downward recursive outlined above, the reference vectors
of subdomams above the point-source are solved as a
function of f (x'). Analogous, the upward recursive
scheme is used to solve the reference vectors of subdo-
mains underneath the point-source as a function of the
components f5; (x'). These last vectors are determined
with the connection condition (20). Subsequently, the re-
cursive schemes (22), (25) and the general solution (14)
are used to generate the solution of (12) in the entire con-
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figuration. For solving the domain-integral equation how-
ever it suffices to determine the Green’s tensor for x and
x' in the interior of subdomain D*. The vectors f x"
and f 34 (x") are x'-dependent only through the scattering
matrices of the subdomains D*" and D~ respectively
(all other scattering matrices are x'-independent). This
x'-dependence is explicitely known (22), (25). Together
with the known x-dependence of the general solution
within D** and D", the scattering-matrix formalism al-
lows the Green’s tensors to be determined much more ex-
plicitely. This will be shown in the next subsection.

C. The Green’s Tensor Components

In this subsection, relations are derived explicitly
showing the x- and x’-dependence of the field vector
FY(x; x") for fixed values ky, and k,. To this end, the re-
flection-matrices ® ¢ and (R” are introduced as being the
downward and upward reflection-matrix corresponding to
the point-source situated at the center of subdomain D*;

= 0. The recursive schemes (22), (25) yield expres-
sions for the reflection-matrices, for points x’ in D dif-
ferent fromx’ = 0 (A : = Ak);

R ('Y = exp [Ax'] - RY -
R“*(x") =exp [-Ax'] - R" -

exp [Ax'],

exp [-Ax']. @27

Together with the definition of the reflection-matrices,

these expressions are used in the connection condition to
give

f[ ](x "y = exp [[_} Ax’}
+

1
. { d} I = ®* - R} - exp [Ax']

®
_ - 1
"G — exp [I_J Ax’} . [(Rd}
- ®Y - R R
-exp[—Ax'] - 534,
s = oo [ ] ax] [
- ®Re - (Ru}—l - ®RA
- exp [Ax'] - 312
o0 | ]
I - ®RY R} - exp [-Ax'] - .
(28)

Substitution in the general solution within subdomain D*
(14) reveals the explicit x- and x'-dependence of the field-
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G (e 1Y
vector F7(x; x');

=G k —_
Fyz 0 x') = 3Ty - {eXp [—Ax] + [J exp [Ax]

ad} I = R} - (fexp [Ax']
+ R* - exp [—Ax']} - (T
“ G + {exp [Ax'] — R”
)7 Gaa)s

Ve x' < x < xk,

~exp [-Ax']} - (T%
29)

F[lz](x x') = 'T[zd . ﬂ: ;} exp [Ax] + exp [—Ax]
SRR AR
({exp [-Ax"] + ®Re - exp [Ax']}
- (Thp™! “Jo — {exp [-Ax]
- & 5™ $),
(30

exp [Ax']} - (

Fl<x < x < xh
For J = (Ji, j», /») equal to the i-th unit vector (i = 1,
2, 3), the components of F yield the Fourigr~trans—
formed electric Green’s tensor components GEF and
G3E. The component G‘EE follows from the linear rela-
tions in (12). The electric Green’s tensor in the spatial (x,
y)-domain gEE , is obtained through inverse Fourier-trans-
formation with respect to k,. Similarly, the magnetic
Green’s tensor is derived from the components of F¥,.

IV. NUMERICAL IMPLEMENTATION

In order to find the nontrivial solutions of the domain-
integral equation, the method of moments is applied [20].
The cross-section of the channel-waveguide D™ is divided
into L rectangular subdomains S', [ € {1, , L}. Rec-
tangle functions are used as expansion functions, which
take the value 1 within S* and vanish outside S’. For the
weighting functions, Dirac functions are used (point-
matching). Assuming that the electric field strength in S
is constant and equal to the actual electric field strength
E'in the barycenter (x, y') of §', the method of moments

yields
» L bt .
Ek ~ '_]___ 2 SS S_w gEE(xk; xr’ y/, kya kz)
Sl
e

2T i=1
- exp (—jkyy") dk, dx’ dy'{e" E

ke{l, -+, L} 31)

This is a system of 3 * L linear algebraic equations for the
3 * L unknown components of the electic field strength;
Ef ke {1, ,L},ie{1,2,3}. A numerical imple-
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mentation has been made for the important class of uniax-
ially anisotropic materials having optic axis perpendicular
to the interface of two adjacent subdomains of the embed-
ding. In the appendlx the components of the decompo-
smon matrix 7" and the corresponding diagonal-matrix
A" are listed. For these materials, the reflection matrices
®“ and R" are diagonal matrices. Therefore, the com-
putation of the components of the Green’s tensor using
(29), (30) can be performed using scalar instead of matrix
arithmetic. Hence, CPU-times are reduced considerably
with respect to full matrix methods (e.g. [17]).

In determining the contribution of subdomain § ! the
order of spatial integration over S’ and inverse Fourier-
transformation with respect to k, is interchanged; first the
relations (29), (30) are 1ntegrated over S', next the inverse
Fourier transformation is evaluated. For the inverse Four-
ier transformation, special care has to be taken of the
spectral plane singularities in the complex k, plane: for
k2 + k = Bswm, Bswy being the propagation constant of
a surface wave mode of the layered embedding, the com-
ponents of the Green’s tensors are singular. Therefore, if
k, is larger than the largest Bgwy, no problems in the in-
verse Fourier transformation over the real axis occur. If
k, is less than the largest Bgwy, the integration path of the
inverse Fourier transformation is deformed into the first
and third quadrant of the complex k, plane around the sur-
face wave poles. '

The interchanging of the order of integrations accom-
plishes the convergence of the inverse Fourier-transfor-
mation ([21], Problem 2.31). The spatial integration over
the subdomains S’ can easily be performed analytically.
The inverse Fourier-transformation for the non-exponen-
tially decaying part of the integrand is also performed an-
alytically. The inverse Fourier-transformation for the re-
maining exponentially decaying part of the integrand is
performed using a Fast Fourier Transformation algo-
rithm.

Subsequently, the system of linear algebraic equations
is solved by searching for those values of k, = 3™ for
which a nontrivial solution exists. Once these eigenvalues
B”™ have been determined, the accompanying eigenvector
is calculated. Obviously, the eigenvalue 3™ corresponds
to a propagation constant of a propagating guided wave
mode, and the eigenvector to its electric field distribution
within the waveguide D",

V. NuMERICAL RESULTS

To illustrate the theory developed in the previous sec-
tions, it is used to investigate the influence of neglecting
the anisotropic character of the embedding of a polymeric
single-rib waveguide. To do so, the propagation constants
of the fundamental modes of the waveguiding structure
are calculated. Although all modes are hybrid (none of
the field components equals zero), the fundamental modes
are denoted as Transverse Electric (TEq, E, is the dom-
inant electric field component) and Transverse Magnetic
(TMyo, E; is the dominant electric field component) re-
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spectively. The waveguiding structure consists of an un-
iaxially anisotropic ridge waveguide, embedded in a un-
iaxially anistotropic stratified medium. This waveguide
has been developed within the framework of the project
RACE 1019 (Research on Advanced Communication
Technologies in Europe). A domain-integral equation
analysis of a similar waveguide has been presented in [17],
where the waveguiding structure was assumed to be iso-
tropic.

The embedding consists of a glass substrate (refractive
index 1.5) on which three polymeric layers are deposited
(Fig. 3); two polyurethane buffer layers of thickness 2.0
pwm and a central guiding layer of thickeness 2.5 um. The
buffer layers are isotropic (refractive index 1.523). The
central guiding layer consists of an uniformly poled elec-
tro-optical polymer. The poled polymer is uniaxially an-
isotropic, the optical axis being normal to the interfaces
of the embedding; n® = Ve, = 1.606, n° =
= 1.576. In the electro-optical polymer, a rib with a width

= 5.0 pm is photochemically induced, using ultra vi-
olet exposure [22]. The rib height r depends on the ex-
posure-time. Due to the ultra-violet exposure, the refrac-
tive indices of the anisotropic poled polymers decrease to
the isotropic value n¢ = = 1.556. For this configura-
tion, the propagation constants of the fundamental modes
TEqy and TM, are determined as a function of r. The
waveguide is operated at the free-space wavelength Ay =
1.335 pm. The numerical results are compared with re-
sults obtained by replacing the embedding of the wave-
guiding structure with a corresponding isotropic one. For
TE modes, the dominant electric field component is par-
allel to the interfaces. Therefore, the corresponding iso-
tropic embedding is obtained by replacing the uniaxially
permittivity tensor by the isotropic permittivity e = (n°)?
= 1.576>. For TM modes, the dominant electric field
component is normal to the interfaces. Therefore, the cor-
responding isotropic embedding is obtained by replacing
the uniaxially permittivity tensor by the isotropic permit-
tivity e = (n9)* = 1.606 (Fig. 4). The waveguide itself
remains uniaxial.

To increase the accuracy of the results, the channel
waveguide has been divided in Q subdomains in the
x-direction and P subdomains in the y-direction (L = P *
(), for ranging values of P and Q. For r = 1.5 micron
and P = 4 =  + 4, Fig. 5 gives the calculated values of
the effective refractive index of the fundamental TM mode
for both the isotropic and the uniaxial case as a function
of 1/L. By extrapolation of this function for 1/L — 0,
extremely accurate results for the effective refractive in-
dex are obtained.

Table I and Table II show the effective refractive in-
dices Nog = B/kg as a function of r for the TEy, and TM,
mode respectively, for both the uniaxially waveguide and
its isotropic counterpart.

The numerical results show that approximating the
uniaxially waveguiding structure by its isotropic counter-
part, leads to only small errors. The errors for TM-modes
are larger than for TE-modes. This is due to the fact that

€ = N€
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Fig. 3. Polymeric rib waveguide developed within RACE 1019.
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TABLE 1
THE NORMALIZED EFFECTIVE REFRACTIVE
INDEX (N4 — 1.56) * 1E5 FOR THE
FUNDAMENTAL TRANSVERSE ELECTRIC
MopE TEy, s A FUNCTION OF THE

RiB-HEIGHT r
r Isotropic Uniaxial
0.5 389 389
1.0 303 303
1.5 240 240
2.0 203 203
2.5 188 188

for TE modes the normal component of the electric field
is negligible. Therefore, the replacement of the extra-or-
dinary component of the permittivity tensor by the ordi-
nary component is of little influence. For TM modes how-
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TABLE II
THE NORMALIZED EFFECTIVE REFRACTIVE
INDEX (N — 1.58) # 1E5 FOR THE
FUNDAMENTAL TRANSVERSE MAGNETIC
MopE TM,, As A FUNCTION OF THE
RIB-HEIGHT r

r Isotropic Uniaxial
0.5 1133 1114
1.0 1025 1011
1.5 960 947
2.0 925 915
2.5 903 903
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Fig. 6. The electric field intensity for the TMgy-mode inside the channel
waveguide (r = 2.0 micron).

ever, the component of the electric field parallel to the
interfaces can not be neglected, even though it is an order
of magnitude smaller than the normal component. Hence,
replacing the ordinary component of the permittivity ten-
sor by the extra-ordinary component does have a certain
amount of influence on the effective refractive indices.
Once the eigenvalues k, = 8™ have been determined,
for which the system of linear equations (31) have a non-
trivial solution, the corresponding null-vector yields the
electric field inside the channel waveguide. In Fig. 6 the
intensity of the electric field of the TMyg-mode inside the
channel waveguide is shown for the case of the uniaxial
embedding and r = 2.0 micron. Subsequently, the elec-
tric and magnetic field everywhere in the configuration
can be found using the integral representation (4), (5).

VI. CoNCLUSIONS

A domain-integral equation method has been presented
for determining both propagation constants and modal
field-distributions of guided surface wave modes of opti-
cal waveguides, embedded in a multi-layered medium.
Both the waveguide and its embedding may be aniso-
tropic. Furthermore, the waveguide may be inhomoge-
neous. A scattering-matrix formalism is presented, which
efficiently evaluates the kernel of the integral equations.
The integral equation method is successfully applied in
the numerical computation of the propagation constants
of a rib waveguide bleached in an e¢lectro-optical poly-
mer, having both an anisotropic rib and anisotropic
embedding.
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APPENDIX
For materials of the embedding having a permittivity
tensor that satisfies

[ : rl rl _rl
€ = eOdlag(El » €2, €3 ),

le{0,---,N+ 1}, (32)
the 4 * 4 system’s matrix A’ equals
0 A
Al = { 12] (33)
Ay 0
with
2 r,d
et [V ]
e’ LN, N2 — ept]
) ~NI + ¢5' NN,
Ay = ko 2 ik
NN, =Ny + €3
Ny,z = y,z/kO’ k() = WNEo UG- (34)

Furthermore, for a point source situated in subdomain D*
the source vector equals

¥ rk
N, y J1 / Eii
* ok

N z 7] 1/ 61
~j b
~j B
The characteristic polynomial p(\) = det (A" = NI is of
degree two in \?. Hence, the eigenvalues of A’ appear in
pairs, having opposite signs. Furthermore, v = (vy, v,,
v3, v4)" being the eigenvector corresponding to the eigen-
value A, the eigenvector corresponding to the eigenvalue
—Nequals ¢’ = (—v;, —v,, v3, vs)". This results in the
diagonal decomposition according to (15), (16).

For uniaxial materials with optic axis perpendicular to
the interfaces, the permittivity tensor satisfies e5! = €5’
and the diagonal decomposition of the system’s matrix is
given by

g=2y"-

- exp (jk,y'). (5)

I . 3 7 7
A=k 717 YNy + Nz — €7,
1

Ny =ky - VN2 + N2 — €5,
" [—-Ny *VN; + N, — €} Nzi|
-N~NN. + N? — ¢! =N,

" |:Ny “Velley! N, - VN3 + N2 - 65’1}
"N, - Nelley! -N, - VNI NI =3 |
(36)
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